

Curso: Agentes IA

Lugar de impartición: Gipuzkoa - Facultad de Informática / Departamento de Lenguajes y Sistemas Informáticos - UPV/EHU (Aula 1.1)

Modalidad: Dual. Presencial (para aquellos que prefieran acudir de forma presencial) + online, dado que todas las clases se emitirán por streaming, en directo, para aquellos alumnos que prefieran seguir el curso online.

Fechas: Noviembre 6, 13, 20 (de 10:00 a 14:00)

Duración: 15 horas (12 horas clase + 3 horas proyecto)

Profesores: Juanan Pereira (<u>juanan.pereira@ehu.eus</u>); Juan Miguel López

(juanmiquel.lopez@ehu.eus)

Conocimientos Previos Recomendados:

Programación en Python

Conocimientos básicos de HTTP, servicios web, HTML y JavaScript.

Es necesario que cada alumno traiga su portátil.

Descripción del Curso:

Este curso está diseñado para proporcionar a los estudiantes conocimientos fundamentales y habilidades prácticas en el campo de los Agentes de IA. Los estudiantes aprenderán a implementar soluciones de agentes de IA y a evaluarlas críticamente.

El objetivo principal es que los estudiantes desarrollen las habilidades para aplicar las tecnologías de agentes IA a problemas reales, creando sus propios conjuntos de herramientas sin atarse a un framework en concreto y adaptables al estado del arte.

Metodología:

Se seguirá un enfoque PBL (aprendizaje basado en problemas, Problem Based Learning). Se plantearán problemas que los estudiantes deberán resolver desarrollando pequeños proyectos basados en agentes (usando distintos frameworks).

Programa del Curso:

Módulo 1: Fundamentos de Agentes de IA

- Introducción a los Agentes de IA
 - Definición de Agentes de IA y sus características
 - Aplicaciones actuales y desafíos
- Componentes Principales de los Agentes de IA
 - o Herramientas, Razonamiento, Acciones, Observaciones

Módulo 2: Model Context Protocol (MCP)

- Uso de MCP para conectar asistentes de IA a fuentes de datos
- Uso de Servidores y clientes MCP
 - Integración con sistemas externos (e.g Google Drive, Telegram, GitHub)
- Programación y depuración de Servidores MCP

Módulo 3: Construcción e Implementación de Agentes de IA

- Partes Esenciales de un Agente
- Implementación de un agente básico (LLM sin soporte de function calling)
- Implementación de un agente básico (LLM con soporte de function calling)

Módulo 4: Frameworks para Agentes de IA: OpenAl Agents SDK

- Introducción a OpenAl Agents
- Agente básico
- Persistencia y Streaming
- Integración de servidores MCP
- Patrón Orquestador. Patrón handoff.
- Sistemas MultiAgente

Calendario del Curso:

Presentación Fundamentos MCP Uso MCP Programación I Ejercicios	LLM+Func. Calling MCP Programación II		OpenAl Agents SDK Persistencia y Streaming Integración de servidores MCP Patrón Orquestador & handoff. Sistemas MultiAgente	
<u>6/11</u>	Ejercicios	<u>13/11</u>	Ejercicios	20/11

Material online

El curso incluye material online (documentación y vídeos) para cubrir 7 horas de trabajo personal del alumno.

SISTEMA DE EVALUACIÓN

- 1. Evaluación Continua (60% de la calificación)
 - Ejercicios prácticos (40%):
 - Implementación de agente básico con function calling
 - Integración con APIs externas usando MCP
 - o Implementación de agente con OpenAl Agents SDK
 - Participación y resolución de problemas en clase (20%):
 - Análisis de ejemplos
 - Debugging colaborativo de soluciones
 - Presentación de enfoques alternativos
- 2. Mini-Proyecto Final (40% de la calificación)
 - Diseño e implementación de solución completa:
 - o Identificación y análisis de problema real
 - Arquitectura de sistema multi-agente
 - o Implementación funcional con frameworks OpenAl Agents
 - Documentación técnica

3. Criterios de Evaluación Específicos:

Criterio	Peso	Indicadores de Logro
Implementación Técnica	35%	Código funcional, uso correcto de frameworks, manejo de errores
Integración de Sistemas	25%	Conexión efectiva con fuentes externas, protocolos adecuados
Diseño de Solución	20%	Arquitectura coherente, escalabilidad, robustez
Evaluación y Optimización	10%	Métricas de rendimiento, identificación de mejoras
Documentación	10%	Claridad técnica, reproducibilidad, casos de uso

4. Modalidades de Entrega:

• Código fuente: Repositorio Git con historial de commits

• **Demo**: Presentación en vídeo (5 minutos) del sistema funcionando

• Informe técnico: Documento de arquitectura y análisis de resultados

5. Criterios de Aprobación:

• Nota mínima: 5.0 sobre 10

• Completar la mayoría de los ejercicios prácticos

• Entrega del mini-proyecto final

• Participación activa en al menos 2/3 de las sesiones